65 research outputs found

    Software Reliability Prediction using Fuzzy Min-Max Algorithm and Recurrent Neural Network Approach

    Get PDF
    Fuzzy Logic (FL) together with Recurrent Neural Network (RNN) is used to predict the software reliability. Fuzzy Min-Max algorithm is used to optimize the number of the kgaussian nodes in the hidden layer and delayed input neurons. The optimized recurrentneural network is used to dynamically reconfigure in real-time as actual software failure. In this work, an enhanced fuzzy min-max algorithm together with recurrent neural network based machine learning technique is explored and a comparative analysis is performed for the modeling of reliability prediction in software systems. The model has been applied on data sets collected across several standard software projects during system testing phase with fault removal. The performance of our proposed approach has been tested using distributed system application failure data set

    Delayed Replantation of Avulsed Incisor with Prolonged Extraoral Dry Storage

    Get PDF
    Trauma to the anterior teeth mainly affects children and adolescents. Tooth avulsion has become a common dental injury, that can occur at any age with maxillary anteriors being commonly affected. It affects the esthetics and psychological well being of both the child and the parent. Management of tooth avulsion in the permanent dentition often presents a challenge to the dental professional. Definitive treatment planning and consultation with specialists is seldom possible at the time of emergency treatment. Replantation of the avulsed tooth is an immediate procedure, which can restore the esthetics, function and create positive impact on patient if carried out under ideal conditions. This article describes the management of a patient with an avulsed maxillary permanent central incisor, that had been stored in unfavorable conditions for about 48 hours. Adequate space maintenance, esthetics and functional requirements of the patient were totally met till a long-term treatment is planned, when the patient finishes his pubertal growth.&nbsp

    Energy-Efficient Real-Time Tasks Scheduling in Cloud Data Centers

    Get PDF
    Reducing energy consumption in cloud computing systems has been a major concern among the researchers because it not only reduce the operational cost but also increase the system reliability, and efficient scheduling approach is a promising way to achieve this goal. But unfortunately, existing energy-aware scheduling approaches are inadequate  for real-time tasks running in cloud environment because they assumes that cloud computing environment are deterministic and pre-computed schedule decisions are followed  during the execution. The above issues are addressed in this paper by considering the number of energy-efficiency factors such as energy cost, CPU power efficiency, carbon emission rate, and workload, and near-optimal energy efficient scheduling policies are proposed for cloud data center for scheduling real-time, aperiodic, independent tasks that can reduce operational cost and provide Quality of Service (QoS)

    Green cloud computing: A survey

    Get PDF
    Green cloud computing is energy oriented distributed networking system with the internet. Now days this cutting edge research topic is highly essential to make the system efficient with environment friendly. Using this technology, users can save their energy, money, proper with efficient utilization of infrastructure, etc. This also helps to improve the efficiency of applications, software, infrastructures

    Novel 1,3,4-oxadiazole induces anticancer activity by targeting NF-κB in hepatocellular carcinoma cells

    Get PDF
    Aberrant activation of NF-κB is linked with the progression of human malignancies including hepatocellular carcinoma (HCC), and blockade of NF-κB signaling could be a potential target in the treatment of several cancers. Therefore, designing of novel small molecule inhibitors that target NF-κB activation is of prime importance in the treatment of several cancers. In the present work, we report the synthesis of series of 1,3,4-oxadiazoles, investigated their anticancer potential against HCC cells, and identified 2-(3-chlorobenzo[b]thiophen-2-yl)-5-(3-methoxyphenyl)-1,3,4-oxadiazole (CMO) as the lead compound. Further, we examined the effect of CMO on cell cycle distribution (flow cytometry), apoptosis (annexin V-propidium iodide-FITC staining), and phosphorylation of NF-κB signaling pathway proteins (IκB and p65) in HCC cells. We found that CMO induced antiproliferative effect in dose- and time-dependent manner. Also, CMO significantly increased the percentage of sub-G1 cell population and induced apoptosis. Furthermore, CMO found to decrease the phosphorylation of IκB (Ser 32) in the cytoplasmic extract and p65 (Ser 536) in the nuclear extract of HCC cells. It also abrogated the DNA binding ability and transcriptional activity of NF-κB. CMO induced the cleavage of PARP and caspase-3 in a time-dependent manner. In addition, transfection with p65 small interfering RNA blocks CMO-induced caspase-3/7 activation. Molecular docking analysis revealed that CMO interacts with the hydrophobic region of p65 protein. Thus, we are reporting CMO as an inhibitor of NF-κB signaling pathway

    Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery

    Get PDF
    Radiotherapy is a key component of cancer treatment. Because of its importance, there has been high interest in developing agents and strategies to further improve the therapeutic index of radiotherapy. DNA double-strand repair inhibitors (DSBRIs) are among the most promising agents to improve radiotherapy. However, their clinical translation has been limited by their potential toxicity to normal tissue. Recent advances in nanomedicine offer an opportunity to overcome this limitation. In this study, we aim to demonstrate the proof of principle by developing and evaluating nanoparticle (NP) formulations of KU55933, a DSBRI. We engineered a NP formulation of KU55933 using nanoprecipitation method with different lipid polymer nanoparticle formulation. NP KU55933 using PLGA formulation has the best loading efficacy as well as prolonged drug release profile. We demonstrated that NP KU55933 is a potent radiosensitizer in vitro using clonogenic assay and is more effective as a radiosensitizer than free KU55933 in vivo using mouse xenograft models of non-small cell lung cancer (NSCLC). Western blots and immunofluorescence showed NP KU55933 exhibited more prolonged inhibition of DNA repair pathway. In addition, NP KU55933 leads to lower skin toxicity than KU55933. Our study supports further investigations using NP to deliver DSBRIs to improve cancer radiotherapy treatment

    Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury

    Get PDF
    BACKGROUND: In the present investigation, the effect of Curcuma longa (Cl) and Ocimum sanctum (Os) on myocardial apoptosis and cardiac function was studied in an ischemia and reperfusion (I-R) model of myocardial injury. METHODS: Wistar albino rats were divided into four groups and orally fed saline once daily (sham, control IR) or Cl (100 mg/kg; Cl-IR) or Os (75 mg/kg; Os-IR) respectively for 1 month. On the 31(st )day, in the rats of the control IR, Cl-IR and Os-IR groups LAD occlusion was undertaken for 45 min, and reperfusion was allowed for 1 h. The hemodynamic parameters{mean arterial pressure (MAP), heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak positive (+) LVdP/dt (rate of pressure development) and negative (-) LVdP/dt (rate of pressure decline)} were monitored at pre-set points throughout the experimental duration and subsequently, the animals were sacrificed for immunohistopathological (Bax, Bcl-2 protein expression & TUNEL positivity) and histopathological studies. RESULTS: Chronic treatment with Cl significantly reduced TUNEL positivity (p < 0.05), Bax protein (p < 0.001) and upregulated Bcl-2 (p < 0.001) expression in comparison to control IR group. In addition, Cl demonstrated mitigating effects on several myocardial injury induced hemodynamic {(+)LVdP/dt, (-) LVdP/dt & LVEDP} and histopathological perturbations. Chronic Os treatment resulted in modest modulation of the hemodynamic alterations (MAP, LVEDP) but failed to demonstrate any significant antiapoptotic effects and prevent the histopathological alterations as compared to control IR group. CONCLUSION: In the present study, significant cardioprotection and functional recovery demonstrated by Cl may be attributed to its anti-apoptotic property. In contrast to Os, Cl may attenuate cell death due to apoptosis and prevent the impairment of cardiac performance
    corecore